Molecular mechanisms that control initiation and termination of physiological depolarization-evoked transmitter release.

نویسندگان

  • Yonatan M Kupchik
  • Grigory Rashkovan
  • Lily Ohana
  • Tal Keren-Raifman
  • Nathan Dascal
  • Hanna Parnas
  • Itzchak Parnas
چکیده

Ca(2+) is essential for physiological depolarization-evoked synchronous neurotransmitter release. But, whether Ca(2+) influx or another factor controls release initiation is still under debate. The time course of ACh release is controlled by a presynaptic inhibitory G protein-coupled autoreceptor (GPCR), whose agonist-binding affinity is voltage-sensitive. However, the relevance of this property for release control is not known. To resolve this question, we used pertussis toxin (PTX), which uncouples GPCR from its G(i/o) and in turn reduces the affinity of GPCR toward its agonist. We show that PTX enhances ACh and glutamate release (in mice and crayfish, respectively) and, most importantly, alters the time course of release without affecting Ca(2+) currents. These effects are not mediated by G(beta)gamma because its microinjection into the presynaptic terminal did not alter the time course of release. Also, PTX reduces the association of the GPCR with the exocytotic machinery, and this association is restored by the addition of agonist. We offer the following mechanism for control of initiation and termination of physiological depolarization-evoked transmitter release. At rest, release is under tonic block achieved by the transmitter-bound high-affinity presynaptic GPCR interacting with the exocytotic machinery. Upon depolarization, the GPCR uncouples from its G protein and consequently shifts to a low-affinity state toward the transmitter. The transmitter dissociates, the unbound GPCR detaches from the exocytotic machinery, and the tonic block is alleviated. The free machinery, together with Ca(2+) that had already entered, initiates release. Release terminates when the reverse occurs upon repolarization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presynaptically silent synapses: spontaneously active terminals without stimulus-evoked release demonstrated in cortical autapses.

This study addresses the question of whether synapses that are capable of releasing transmitters spontaneously can also release them in an excitation-dependent manner. For this purpose, whole cell patch recordings were performed for a total of 48 excitatory solitary neurons in a microisland culture to observe excitatory autaptic currents elicited by spontaneous transmitter release as well as by...

متن کامل

Metabotropic Glutamate Receptor–Mediated Control of Neurotransmitter Release

Presynaptic metabotropic glutamate receptors (mGluRs) modulate the release of transmitter from most central synapses. However, difficulties in recording from presynaptic structures has lead to an incomplete understanding of the mechanisms underlying these fundamental processes. By recording directly from presynaptic reticulospinal axons and postsynaptic motoneurons of the lamprey spinal cord, w...

متن کامل

Non-cholinergic effects of paraoxon on [3h]-GABA release from rat cerebellar giant synaptosomes

Diethyl p-nitrophenyl phosphate (paraoxon) is the active toxic metabolite of parathion. Some evidences indicate that OPs affect the GABA system via noncholinergic mechanisms. The purpose of this study was to investigate the effects of paraoxon on K+-evoked [3H]-GABA release from cerebellar synaptosomes. Adult male rats (200 ± 30 g; 3-4 months old) were sacrificed by decapitation and the cerebel...

متن کامل

Non-cholinergic effects of paraoxon on [3h]-GABA release from rat cerebellar giant synaptosomes

Diethyl p-nitrophenyl phosphate (paraoxon) is the active toxic metabolite of parathion. Some evidences indicate that OPs affect the GABA system via noncholinergic mechanisms. The purpose of this study was to investigate the effects of paraoxon on K+-evoked [3H]-GABA release from cerebellar synaptosomes. Adult male rats (200 ± 30 g; 3-4 months old) were sacrificed by decapitation and the cerebel...

متن کامل

Presynaptic facilitation at the crayfish neuromuscular junction. Role of calcium-activated potassium conductance

Membrane potential was recorded intracellularly near presynaptic terminals of the excitor axon of the crayfish opener neuromuscular junction (NMJ), while transmitter release was recorded postsynaptically. This study focused on the effects of a presynaptic calcium-activated potassium conductance, gK(Ca), on the transmitter release evoked by single and paired depolarizing current pulses. Blocking...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 11  شماره 

صفحات  -

تاریخ انتشار 2008